

 AEROID-CAM-009 ©2006 Copyright 1
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

EPC Identifiers for
aerospace
Mark Harrison,
Auto-ID Lab, University of Cambridge, UK
Report Abstract: This paper is a technical report developed in
conjunction with the ATA ‘RFID on Parts’ work group to express
end-user requirements and propose a technical solution,
aligned with existing EPCglobal Tag Data Standards.

 AEROID-CAM-009 ©2006 Copyright 2
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

Preface
There is now a growing critical mass of companies who are adopting the

Electronic Product Code (EPC) technology for large-scale deployment of Radio-
Frequency Identification (RFID) technology providing automated input into business
information systems in order to improve the efficiency of business processes.

The early vision for the EPC Network architecture was developed by the Auto-
ID Centre during 1999-2003, an industrially funded project involving academics at
(then) six leading research institutes around the world, together with over 100 major
industrial sponsors, consisting of both end-users and technology solution providers.

Since the transition of the Auto-ID Centre into Auto-ID Labs and EPCglobal in
November 2003, the number of companies involved in this effort has increased
almost ten-fold in only three years and the activities are reaching out to other industry
sectors beyond the initial focus on fast-moving consumer goods and the retail sector.
The EPC system is already being used by the US Department of Defense – and is
also being developed for the healthcare and life sciences sector, to enable item-level
identification of pharmaceuticals and support electronic pedigrees to try to eliminate
counterfeits.

On the technical side, the original vision for the EPC Network architecture has
been substantially overhauled, focusing primarily on defining standard interfaces at
various layers of the architecture, ranging from the RFID air interface, to the low-level
software interfaces to readers (Reader Protocol, Reader Management), access to
filtered data (Application Level Events, ALE) and to information services (EPC
Information Services, EPCIS). The Object Name Service is operational – and further
developments of serial-level lookup services (Discovery Services) are underway.
The collaborative standards development process involving both technology solution
providers and end users has resulted in most of the standard interfaces required for
multi-vendor interoperability being ratified as freely available open standards, which
can be downloaded from the website of EPCglobal.

The aerospace sector already have a system of unique identifiers for marking
aircraft parts. These unique identifiers used the CAGE (Commercial and
Government Entity) code to identify the manufacturer or supplier, together with a
serial number that is unique within the CAGE code. This is the basis for the Air
Transport Association (ATA) Spec 2000 identifier, which is widely used for tracking
parts and their life history. A number of organizations still use an older method of
mass serializing, consisting of the CAGE code, an Original Part Number and a
Serialized Part Sequence Number. This 3-part unique identifier is also known as UID
Construct 2.

Traditionally, part marking on aircraft parts has been done via handwritten or
embossed identifiers on name plates, then by the use of linear barcodes. The
current activity within the industry is looking at using RFID tags to store not only a
unique identifier, but also some additional data about the history of the part.

Given the likelihood of mass-adoption of EPC technology, it may be of
significant benefit to the aerospace sector if they are able to express their existing
identifiers in an EPC-compatible representation, so that they can make use of EPC-
compliant readers, middleware and information systems that is being developed for
multiple industry sectors and thereby use commoditized solutions rather than

 AEROID-CAM-009 ©2006 Copyright 3
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

requiring a bespoke solution for the aerospace sector. The ATA ‘RFID on Parts’
working group is currently in the process of defining standards for the aerospace
sector about how to store this data on an RFID tag. Members of Auto-ID Labs within
the Aerospace ID technologies programme have been working closely with this forum
and this report is one of the results of that collaboration.

Beginning with a clear statement of the user requirements for wanting an EPC
representation, while aligning with their existing unique identifiers that are already
well entrenched, the remainder of the report provides a technical proposal about how
the ATA Spec 2000 identifier and the UID construct 2 can be mapped into EPC
representations, suitable for encoding the identifier on the RFID tag (compact binary
format), for use with filtering middleware and information systems (URN formats).

This report will be submitted via Boeing (a subscriber of EPCglobal) to the
EPCglobal Aerospace & Defense business action group, and subject to their
endorsement, will be passed to the EPCglobal Tag Data Translation and Standards
work group for their consideration about how it may be incorporated within a future
revision of the EPCglobal Tag Data Standards.

 In order to minimise the amount of additional technical work that needs to be
done, we have taken care to align the technical sections as closely as possible with
the format, terminology and methodology used in the existing Tag Data Standard.

We have already prepared two draft ‘definition files’ for EPCglobal Tag Data
Translation, which will allow existing readers, integrated label printers, middleware
etc., which uses the Tag Data Translation standard to automatically by able to handle
the unique identifiers for the aerospace sector, with an upgrade as simple as reading
in the new definition files that define the encoding and decoding rules in a machine-
readable manner.

 Furthermore, as soon as an EPC representation has been approved, we
intend to provide free of charge a Tag Data Translation software library and software
application to the aerospace community, to assist them with the translation between
their existing notation for identifiers and the URN and binary representations that are
used in the EPC system.

Acknowledgment:
 We wish to thank members of the ATA RFID on Parts work group for useful

discussions and in particular, the efforts of Joyce Polkinghorne (American Airlines) for
further development and strengthening of the section on user requirements.

 AEROID-CAM-009 ©2006 Copyright 4
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

Contents:

User Requirements 5
ATA Spec 2000 UID Construct 1 (ATA1) 7
ATA1-132 Encoding Procedure 8
ATA1-132 Decoding Procedure 9
URN representations for ATA UID Construct 1 10
Syntax for ATA UID Construct 1 11
Summary (non-normative) for ATA UID Construct 1 12
ATA UID Construct 2 (ATA2) 14
ATA2-222 Encoding Procedure 15
ATA2-222 Decoding Procedure 16
URN representations for ATA UID Construct 2 17
Syntax for ATA UID Construct 2 19
Summary (non-normative) for ATA UID Construct 2 20
Appendix A1: Encoding Scheme Summary Table (non-normative)
 for ATA UID Construct 1 22
Appendix A2: Encoding Scheme Summary Table (non-normative)
 for ATA UID Construct 2 23
Appendix H: Conversion between 6-bit compacted values and the subset of
 ASCII characters permitted for use in ATA Spec 2000 identifiers 24

 AEROID-CAM-009 ©2006 Copyright 5
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

User Requirements

Purpose

The purpose of this paper is to provide the background information and justification
for the allocation of two EPC header codes for use by the aerospace industry. This
will provide aerospace with a globally unique ID system for RFID tags which can
integrate seamlessly with existing information systems, EDI messages and
airworthiness certificates without the need to do an additional identifier lookup.

Background

The aerospace industry identifies organizations by CAGE code – a five character
alphanumeric code that is assigned by the US Department of Defense (DoD), NATO
and other governments. The CAGE code has been an integral part of
communication within the airline industry for many decades to do procurement of
aircraft parts, order repairs, and to designate design/manufacturing authority, etc.
The marking of parts as unique individual entities has been another predominant use
of the CAGE code in aviation.

In 1992 the Air Transport Association approved standards to formalize the use of the
CAGE code in aircraft part marking practices. To give a part a unique individual
identity which will never change during the life of the part, the CAGE code is
combined with a serial number. This serial number is assigned by the manufacturer
and unique within their CAGE code. This is often referred to as the ATA SPEC2000
identifier; however, for the purposes of this document it will be called Construct 1.

While most organizations within the aerospace industry can utilize the Construct 1
schema, there are a few companies who cannot. These companies serialize within
part number, rather than at the higher level of entity wide CAGE code. To
accommodate these companies and have them able to participate in unique part
marking in a standardized manner, the ATA defined a secondary schema of
permanent identification comprised of CAGE code, original part number and
sequence number. In this document this schema will be called Construct 2.

Both Construct 1 and Construct 2 are comprised of data elements defined in the ATA
Common Support Dictionary (CSDD) and are used in other applications and
mediums of communication as aerospace companies do business.

The formats of the constructs are documented in the SPEC2000 International
Specifications, Chapter 9. This body of standards for business practices and
communication within the aerospace industry is governed and maintained by the
ATA, and used by companies worldwide.

 AEROID-CAM-009 ©2006 Copyright 6
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

Requirements

New technology should be the servant of industry, enabling it to function more
adroitly and economically. Where there are established efficiencies, those should
not be lost with the move to new technology. Within the aerospace industry the use
of strictly defined common data elements is a long established practice,
encompassing many applications including the unique part ID schemas, Construct 1
and Construct 2. The new technology, in this case RFID, should enhance these
current best practices. Therefore, the aerospace industry is best served by
translating the established Unique ID schemas for parts into compatible codes for
RFID.

Request

The aerospace industry recognizes the importance of the open standards for
networked RFID which are being developed within the EPCglobal community – and
the benefits in terms of interoperability, end-user choice of vendors and eventual
lowering of costs (commoditization) of being able to use hardware and software
which is certified to be compliant with the relevant EPCglobal standards. With this in
mind, the aerospace industry is seeking an EPC representation of its existing well-
established UID constructs 1 and 2.

To support the co-existence of both UID Construct 1 and Construct 2, the aerospace
industry, represented by the ATA RFID on parts working group, requests that
EPCglobal allocates at its earliest convenience:

• One 8-bit EPC header code for UID Construct 1
• One 8-bit EPC header code for UID Construct 2

The technical sections in the remainder of this document propose how the UID
Constructs 1 and 2 may be represented as EPC identifiers, both in terms of URN
notation, URN patterns for EPCs and binary representation for encoding on RFID
tags.

The encoding and decoding rules in the technical sections that follow have been
written using the same terminology and notation as found in the EPCglobal Tag Data
Standard v1.3, in order to facilitate inclusion within a future revision of the EPCglobal
Tag Data Standard that includes the new header values requested above, as well as
to enable the ATA to harmonize with EPCglobal when the ATA is ready to include
these details within a future revision of the ATA Spec 2000 standard.

 AEROID-CAM-009 ©2006 Copyright 7
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

ATA Spec 2000 UID Construct 1 (ATA1)
The ATA Spec 2000 identifier (UID Construct 1) is defined in Chapter 9 of the ATA e-
Business Specifications.

In addition to a Header, the EPC representation, ATA1-132 is composed of three fields: the
Filter Value, CAGE code, and Serial Number, as shown in Table 1.

 Header Filter Value CAGE code

(CAG, MFR or
SPL)

Serial Number
(SER)

ata1-132 8 4 30 90
 xxxxxxxx

(to be defined)
(Refer to table
2 for values)

5 characters
(uppercase
alphanumeric
only)

Up to 15
characters
(uppercase
alphanumeric
and hyphen)

Table 1. The 132-bit binary EPC representation for the ATA Spec 2000 identifier (UID
Construct 1) including the header, and allowed character ranges for CAGE code and Serial
Number.

• Header is 8-bits, with a binary value of xxxxxxxx (to be defined by EPCglobal)
• Filter Value is not part of the ATA Spec 2000 identifier, but is used for fast filtering and
pre-selection of basic logistics types. The Filter Values are specified in Table 2.

Type Binary Value
Pallet 0000
Case 0001
UID item 0010
Safety equipment 0011
Reserved for future use all other values

Table 2. Filter Values for use with the ATA Spec 2000 identifier

• CAGE code contains a literal embedding of the CAGE code using 6-bit ASCII
compaction.

• Serial Number is a unique string serial code for each instance. Leading zeros on the Serial
Number are not significant.

 AEROID-CAM-009 ©2006 Copyright 8
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

ATA1-132 Encoding Procedure

The following procedure creates an ATA1-132 encoding.

Given:

• A 5-character CAGE code C consisting of uppercase alphanumeric characters
c1c2c3c4c5

• A Serial Number S up to 15 characters in length, consisting of any combination of
the digits 0-9, the uppercase letters A-Z and the hyphen character

• A Filter Value F where 0 ≤ F < 16

Procedure:

1. Check that each of the characters c1c2c3c4c5 of the CAGE code C is one of the characters
listed in the table in Appendix H. If this is not the case, stop: this character string cannot be
encoded as an ATA1-132. Otherwise, construct the CAGE code by concatenating the 6-bit
code, as given in Appendix H, for each of the characters c1c2c3c4c5, yielding 6*5 = 30 bits
total. This is the binary representation of the CAGE code, denoted c.

2. Check that each of the characters s1s2…sK of the Serial Number S is one of the characters
listed in the table in Appendix H. If this is not the case, stop: this character string cannot be
encoded as an ATA1-132. Otherwise, construct the Serial Number by concatenating the 6-bit
code, as given in Appendix H, for each of the characters s1s2…sK, yielding 6*K bits. If K <
15, concatenate additional zero bits to the right to make a total of 90 bits. This is the binary
representation of the serial number, denoted s.

3. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header xxxxxxxx (8 bits), Filter Value F (4 bits), CAGE code
c from Step 1 (30 bits), Serial Number s from Step 2 (90 bits)

 AEROID-CAM-009 ©2006 Copyright 9
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

ATA1-132 Decoding Procedure

Given:

• An ATA1-132 as a 132-bit bit string xxxxxxxxb123b122…b0 (where the first eight bits
xxxxxxxx are the header)

Yields:

• A 5-character CAGE code

• A Serial Number up to 15 characters

• A Filter Value

Procedure:

1. Bits b123b122b121b120, considered as an unsigned integer, are the Filter Value.

2. Divide the bits b119b118…b91b90 into five 6-bit segments. The result should consist of five
non-zero binary segments. Lookup each of the 6-bit segments in Appendix H to obtain a
corresponding character. If any of the 6-bit segments has a value that is not in Appendix H,
stop: this bit string cannot be decoded as an ATA1-132. The five characters so obtained,
considered as a character string c1c2…ck, is the value of the CAGE code.

3. Divide the remaining bits b89b88… b1b0 into fifteen 6-bit segments. The result should
consist of K non-zero binary segments followed by 15-K binary zero segments, where 0< K
<=15). If this is not the case, stop; this bit string cannot be decoded as an ATA1-132.
Otherwise, lookup each of the non-zero 6-bit segments in Appendix H to obtain a
corresponding character. If any of the non-zero 6-bit segments has a value that is not in
Appendix H, stop: this bit string cannot be decoded as an ATA1-132.
The K characters so obtained, considered as a character string s1s2…sk, is the value of the
Serial Number.

 AEROID-CAM-009 ©2006 Copyright 10
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

URN representations for ATA UID Construct 1

Pure-identity URI
For the ATA Spec 2000 identifier (UID construct 1), the pure identity URI representation is
as follows:

urn:epc:id:ata1:CAGECode.serialNumber

where CAGECode is the five-character CAGE code and serialNumber is the serial
number represented as a string of between 1 and 15 characters (consisting exclusively of any
of the upper-case alphanumeric characters and the hyphen symbol ‘–‘).

Tag-encoding URI
For the ATA Spec 2000 identifier (UID construct 1), the tag-encoding URI representation is
as follows:

urn:epc:tag:ata1-132:filter.CAGECode.serialNumber

where filter is the filter value represented as either one or two decimal digits, CAGECode is
the five-character CAGE code and serialNumber is the serial number represented as a
string of between 1 and 15 characters (consisting exclusively of any of the upper-case
alphanumeric characters and the hyphen symbol ‘–‘).

Pattern URI
The pattern URI for the ATA Spec 2000 identifier (UID construct 1) is as follows:

urn:epc:pat:tagType:filterPat.CAGECodePat.serialNumberPat

where tagType is ata1-132, filterPat is either a filter value, a range of the form [lo-
hi], or a * character; CAGECodePat is either a CAGE Code or a * character; and
serialNumberPat is either a serial number or a * character.

Pure Identity Pattern URI
The pure identity pattern URI for the ATA Spec 2000 identifier (UID Construct 1) is as
follows:

urn:epc:idpat:ata1:CAGECodePat.serialNumberPat

where CAGECodePat is either a CAGE Code or a * character and serialNumberPat is
either a serial number or a * character with the proviso that CAGECodePat shall not be a *
character if serialNumberPat is not a * character.

 AEROID-CAM-009 ©2006 Copyright 11
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

Syntax for ATA UID Construct 1

The syntax of the EPC-URI and the URI forms for related data types are defined by the
following grammar.

Common Grammar Elements
NumericComponent ::= ZeroComponent | NonZeroComponent
ZeroComponent ::= “0”
NonZeroComponent ::= NonZeroDigit Digit*
PaddedNumericComponent ::= Digit+
Digit ::= “0” | NonZeroDigit
NonZeroDigit ::= “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8”
| “9”
UpperAlpha ::= “A” | “B” | “C” | “D” | “E” | “F” | “G”
| “H” | “I” | “J” | “K” | “L” | “M” | “N”
| “O” | “P” | “Q” | “R” | “S” | “T” | “U”
| “V” | “W” | “X” | “Y” | “Z”
Hyphen ::= “-”
CAGECodeChar ::= Digit | “A” | “B” | “C” | “D” | “E” |
“F” | “G” | “H” | “J” | “K” | “L” | “M” | “N” | “P” | “Q” |
“R” | “S” | “T” | “U” | “V” | “W” | “X” | “Y” | “Z”

UpperAlphanumeric :: = Digit | UpperAlpha
UpperAlphanumericAndHyphen :: = Digit | UpperAlpha | Hyphen

StarComponent ::= “*”
RangeComponent ::= “[” NumericComponent “-”
 NumericComponent “]”

ATATagType ::= “ata1-132”
ATAFilter ::= NumericComponent
CAGECode ::= CAGECodeChar*5
ATASerialNumber ::= UpperAlphanumericAndHyphen+
ATAFilterPat ::= PatComponent
CAGECodePat ::= CAGECode | StarComponent
ATASerialNumberPat ::= ATASerialNumber | StarComponent

 AEROID-CAM-009 ©2006 Copyright 12
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

Pure-identity URI
ATA1-URI ::= “urn:epc:id:ata1:” CAGECode “.” ATASerialNumber

Tag-encoding URI
ATA1TagURI ::= “urn:epc:tag:” ATA1TagType “:” ATAFilter “.”
CAGECode “.” ATASerialNumber

EPC Pattern URI
ATAPatURI ::= “urn:epc:pat:” ATA1TagType “:” ATAFilterPat “.”
CAGECodePat “.” ATASerialNumberPat

EPC Identity Pattern URI
ATAIDPatURI ::= “urn:epc:idpat:ata1:” ATAIDPatMain
ATAIDPatMain ::= CAGECode “.” ATASerialNumber
| CAGECode “.*” | “*.*”

Summary (non-normative) for ATA UID Construct 1
The syntax rules above can be summarized informally as follows:

urn:epc:id:ata1:TTT.BBB

urn:epc:tag:ata1-132:FFF.TTT.BBB

urn:epc:idpat:ata1:TTT.BBB

urn:epc:pat:ata1-132:FFFpat.TTT.BBBpat

urn:epc:pat:ata1-132:FFFpat.*.BBBpat

where

BBB denotes an alphanumeric Serial Number (including the hyphen)
TTT denotes a CAGE code assigned by the US DoD or NATO
FFF denotes a filter code as used by the SGTIN, SSCC, SGLN, GRAI, GIAI, DoD and
ATA tag encodings
BBBpat denotes an alphanumeric Serial Number (including the hyphen) or *
TTTpat denotes a CAGE code (assigned by the US DoD or NATO) or *
FFFpat denotes a filter code as used by the SGTIN, SSCC, SGLN, GRAI, GIAI, DoD and
ATA tag encodings but allowing * and [lo-hi] pattern syntax in addition

 AEROID-CAM-009 ©2006 Copyright 13
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

Translation between EPC-URI and Other EPC Representations
This section defines the semantics of EPC-URI encodings, by defining how they are
translated into other EPC representations and vice versa.

Bit string into EPC-URI (pure identity)

Create an EPC-URI by concatenating the following: the string
urn:epc:id:ata1:, the CAGE code c1c2c3c4c5, a dot (.) character and the Serial Number.
The Serial Number should have no leading zeros, except where the Serial Number is itself
zero, in
which case the corresponding URI portion must consist of a single zero character.

Bit string into tag EPC-URI (tag-encoding)

Create an EPC tag URI by concatenating the following: the string
urn:epc:tag:, the encoding scheme (ata1-132), the colon character (:), the Filter
Value F as a decimal integer, a dot (.) character, the CAGE code c1c2c3c4c5, a dot (.)
character and the Serial Number.
The Serial Number should have no leading zeros, except where the Serial Number is itself
zero, in
which case the corresponding URI portion must consist of a single zero character.

URI into Bit String
The following procedure translates a URI into a bit string:

1. If the URI is an ATA1-URI (urn:epc:id:ata1:), stop: the URI cannot be translated
into a bit string.

2. If the URI is an EPC Tag URI (urn:epc:tag:encName:), parse the URI using the
grammar for TagURI as given on p5.
If the URI cannot be parsed using these grammars, stop: the URI is illegal and cannot be
translated into a bit string.
3. If encName is ata1-132, let the URI be written as
urn:epc:tag:encName:f1f2…fF.c1c2…c5.s1s2…sK
4. Interpret f1f2…fF as a decimal integer filter value F
5. Interpret c1c2…c5 as the 5-character CAGE code C
6. Interpret s1s2…sK as a string serial number S
7. Carry out the encoding procedure defined on p8.

 AEROID-CAM-009 ©2006 Copyright 14
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

ATA UID Construct 2 (ATA2)

In addition to a Header, the EPC representation, ATA2-222 is composed of four fields: the
Filter Value, CAGE code, Original Part Number and Sequential Part Serial Number, as
shown in Table 1.

 Header Filter Value CAGE code

(CAG, MFR
or SPL)

Original
Part
Number
(PNO)

Sequential
Part Serial
Number
(SEQ)

ata2-222 8 4 30 90 90
 yyyyyyyy

(to be
defined)

(Refer to
table 2 for
values)

5 characters
(uppercase
alphanumeric
only)

Up to 15
characters
(uppercase
alphanumeric
and hyphen)

Up to 15
characters
(uppercase
alphanumeric
and hyphen)

Table 1. The 222-bit binary EPC representation for the ATA identifier based on UID
Construct 2 including the header, and allowed character ranges for CAGE code, Original
Part Number and Sequential Part Serial Number.

• Header is 8-bits, with a binary value of yyyyyyyy (to be defined by EPCglobal)
• Filter Value is not part of the ATA identifier, but is used for fast filtering and pre-selection
of basic logistics types. The Filter Values are specified in Table 2.

Type Binary Value
Pallet 0000
Case 0001
UID item 0010
Safety equipment 0011
Reserved for future use all other values

Table 2. Filter Values for use with the ATA identifier

• CAGE code contains a literal embedding of the CAGE code using 6-bit ASCII
compaction.

• Original Part Number is a literal embedding of the Original Part Number code using 6-bit
ASCII compaction. Leading zeros on the Original Part Number are not significant.

• Sequential Part Serial Number is a literal embedding of the Sequential Part Serial
Number using 6-bit ASCII compaction. The Sequential Part Serial Number is unique within
the Original Part Number for each instance within a particular CAGE code. Leading zeros on
the Sequential Part Serial Number are not significant.

 AEROID-CAM-009 ©2006 Copyright 15
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

ATA2-222 Encoding Procedure

The following procedure creates an ATA2-222 encoding.

Given:

• A 5-character CAGE code C consisting of uppercase alphanumeric characters
c1c2c3c4c5

• An Original Part Number P up to 15 characters in length, consisting of any
combination of the digits 0-9, the uppercase letters A-Z and the hyphen character

• A Sequential Part Serial Number S up to 15 characters in length, consisting of any
combination of the digits 0-9, the uppercase letters A-Z and the hyphen character

• A Filter Value F where 0 ≤ F < 16

Procedure:

1. Check that each of the characters c1c2c3c4c5 of the CAGE code C is one of the characters
listed in the table in Appendix H. If this is not the case, stop: this character string cannot be
encoded as an ATA2-222. Otherwise, construct the CAGE code by concatenating the 6-bit
code, as given in Appendix H, for each of the characters c1c2c3c4c5, yielding 6*5 = 30 bits
total. This is the binary representation of the CAGE code, denoted c.

2. Check that each of the characters p1p2…pL of the Original Part Number P is one of the
characters listed in the table in Appendix H. If this is not the case, stop: this character string
cannot be encoded as an ATA2-222. Otherwise, construct the Original Part Number by
concatenating the 6-bit code, as given in Appendix H, for each of the characters p1p2…pL,
yielding 6*L bits. If L < 15, concatenate additional zero bits to the right to make a total of 90
bits. This is the binary representation of the original part number, denoted p.

3. Check that each of the characters s1s2…sK of the Serial Number S is one of the characters
listed in the table in Appendix H. If this is not the case, stop: this character string cannot be
encoded as an ATA2-222. Otherwise, construct the Serial Number by concatenating the 6-bit
code, as given in Appendix H, for each of the characters s1s2…sK, yielding 6*K bits. If K <
15, concatenate additional zero bits to the right to make a total of 90 bits. This is the binary
representation of the serial number, denoted s.

4. Construct the final encoding by concatenating the following bit fields, from most
significant to least significant: Header yyyyyyyy (8 bits), Filter Value F (4 bits), CAGE code
c from Step 1 (30 bits), Original Part Number p from Step 2 (90 bits), Sequential Part Serial
Number s from Step 3 (90 bits)

 AEROID-CAM-009 ©2006 Copyright 16
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

ATA2-222 Decoding Procedure

Given:

• An ATA2-222 as a 222-bit bit string yyyyyyyyb213b212…b0 (where the first eight bits
yyyyyyyy are the header)

Yields:

• A 5-character CAGE code

• An Original Part Number (PNO) up to 15 characters

• A Sequential Part Serial Number (SEQ) up to 15 characters

• A Filter Value

Procedure:

1. Bits b213b212b211b210, considered as an unsigned integer, are the Filter Value.

2. Divide the bits b209b208…b181b180 into five 6-bit segments. The result should consist of five
non-zero binary segments. Lookup each of the 6-bit segments in Appendix H to obtain a
corresponding character. If any of the 6-bit segments has a value that is not in Appendix H,
stop: this bit string cannot be decoded as an ATA2-222. The five characters so obtained,
considered as a character string c1c2…ck, is the value of the CAGE code (CAG).

3. Divide the remaining bits b179b178… b91b90 into fifteen 6-bit segments. The result should
consist of L non-zero binary segments followed by 15-L binary zero segments, where 0< L
<=15). If this is not the case, stop; this bit string cannot be decoded as an ATA2-222.
Otherwise, lookup each of the non-zero 6-bit segments in Appendix H to obtain a
corresponding character. If any of the non-zero 6-bit segments has a value that is not in
Appendix H, stop: this bit string cannot be decoded as an ATA2-222.
The L characters so obtained, considered as a character string p1p2…pL, is the value of the
Original Part Number (PNO).

4. Divide the remaining bits b89b88… b1b0 into fifteen 6-bit segments. The result should
consist of K non-zero binary segments followed by 15-K binary zero segments, where 0< K
<=15). If this is not the case, stop; this bit string cannot be decoded as an ATA2-222.
Otherwise, lookup each of the non-zero 6-bit segments in Appendix H to obtain a
corresponding character. If any of the non-zero 6-bit segments has a value that is not in
Appendix H, stop: this bit string cannot be decoded as an ATA2-222.
The K characters so obtained, considered as a character string s1s2…sk, is the value of the
Sequential Part Serial Number (SEQ).

 AEROID-CAM-009 ©2006 Copyright 17
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

URN representations for ATA UID Construct 2

Pure-identity URI
For the ATA identifier based on UID construct 2, the pure identity URI representation is as
follows:

urn:epc:id:ata2:CAGECode.origPartNumber.seqNumber

where CAGECode is the five-character CAGE code, origPartNumber is the original part
number (PNO) and seqNumber is the sequential part serial number (SEQ), where both the
original part number (PNO) and the sequential part serial number (SEQ) are represented as a
string of between 1 and 15 characters (consisting exclusively of any of the upper-case
alphanumeric characters and the hyphen symbol ‘–‘).

Tag-encoding URI
For the ATA identifier based on UID construct 2, the tag-encoding URI representation is as
follows:

urn:epc:tag:ata2-222:filter.CAGECode.origPartNumber.seqNumber

where filter is the filter value represented as either one or two decimal digits, CAGECode is
the five-character CAGE code, origPartNumber is the original part number (PNO) and
seqNumber is the sequential part serial number (SEQ), where both the original part number
(PNO) and the sequential part serial number (SEQ) are represented as a string of between 1
and 15 characters (consisting exclusively of any of the upper-case alphanumeric characters
and the hyphen symbol ‘–‘).

Pattern URI
The pattern URI for the ATA identifier based on UID construct 2 is as follows:

urn:epc:pat:tagType:filterPat.CAGECodePat.origPartNumberPat
.seqNumberPat

where tagType is ata2-222, filterPat is either a filter value, a range of the form [lo-
hi], or a * character; CAGECodePat is either a CAGE Code or a * character;
origPartNumberPat is either an original part number or a * character and
seqNumberPat is either a serial number or a * character.

 AEROID-CAM-009 ©2006 Copyright 18
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

Pure Identity Pattern URI
The pure identity pattern URI for the ATA identifier based on UID Construct 2 is as follows:

urn:epc:idpat:ata2:CAGECodePat.origPartNumberPat.seqNumberPat

where CAGECodePat is either a CAGE Code or a * character; origPartNumberPat is
either an original part number or a * character and seqNumberPat is either a serial number
or a * character, with the proviso that:

• CAGECodePat shall not be a * character if either seqNumberPat or
origPartNumberPat is not a * character.

• origPartNumberPat shall not be a * character if seqNumberPat is not a *
character.

 AEROID-CAM-009 ©2006 Copyright 19
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

Syntax for ATA UID Construct 2

The syntax of the EPC-URI and the URI forms for related data types are defined by the
following grammar.

Common Grammar Elements
NumericComponent ::= ZeroComponent | NonZeroComponent
ZeroComponent ::= “0”
NonZeroComponent ::= NonZeroDigit Digit*
PaddedNumericComponent ::= Digit+
Digit ::= “0” | NonZeroDigit
NonZeroDigit ::= “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8”
| “9”
UpperAlpha ::= “A” | “B” | “C” | “D” | “E” | “F” | “G”
| “H” | “I” | “J” | “K” | “L” | “M” | “N”
| “O” | “P” | “Q” | “R” | “S” | “T” | “U”
| “V” | “W” | “X” | “Y” | “Z”
Hyphen ::= “-”
CAGECodeChar ::= Digit | “A” | “B” | “C” | “D” | “E” |
“F” | “G” | “H” | “J” | “K” | “L” | “M” | “N” | “P” | “Q” |
“R” | “S” | “T” | “U” | “V” | “W” | “X” | “Y” | “Z”

UpperAlphanumeric :: = Digit | UpperAlpha
UpperAlphanumericAndHyphen :: = Digit | UpperAlpha | Hyphen

StarComponent ::= “*”
RangeComponent ::= “[” NumericComponent “-”
 NumericComponent “]”

ATATagType ::= “ata2-222”
ATAFilter ::= NumericComponent
CAGECode ::= CAGECodeChar*5
ATAPartNumber ::= UpperAlphanumericAndHyphen+
ATASeqNumber ::= UpperAlphanumericAndHyphen+
ATAFilterPat ::= PatComponent
CAGECodePat ::= CAGECode | StarComponent
ATAPartNumberPat ::= ATAPartNumber | StarComponent
ATASeqNumberPat ::= ATASeqNumber | StarComponent

 AEROID-CAM-009 ©2006 Copyright 20
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

Pure-identity URI
ATA2-URI ::= “urn:epc:id:ata2:” CAGECode “.” ATAPartNumber “.”
ATASeqNumber

Tag-encoding URI
ATA2TagURI ::= “urn:epc:tag:” ATA2TagType “:” ATAFilter “.”
CAGECode “.” ATAPartNumber “.” ATASeqNumber

EPC Pattern URI
ATAPatURI ::= “urn:epc:pat:” ATA2TagType “:” ATAFilterPat “.”
CAGECodePat “.” ATAPartNumberPat “.” ATASeqNumberPat

EPC Identity Pattern URI
ATAIDPatURI ::= “urn:epc:idpat:ata2:” ATAIDPatMain
ATAIDPatMain ::= CAGECode “.” ATAPartNumber “.” ATASeqNumber
| CAGECode “.” ATAPartNumber “.*” | CAGECode “.*.*” | “*.*.*”

Summary (non-normative) for ATA UID Construct 2
The syntax rules above can be summarized informally as follows:

urn:epc:id:ata2:TTT.BBB

urn:epc:tag:ata2-222:FFF.TTT.BBB

urn:epc:idpat:ata2:TTT.BBB

urn:epc:pat:ata2-222:FFFpat.TTT.BBBpat

urn:epc:pat:ata2-222:FFFpat.*.BBBpat

where

BBB denotes an alphanumeric Serial Number (including the hyphen)
TTT denotes a CAGE code assigned by the US DoD or NATO
FFF denotes a filter code as used by the SGTIN, SSCC, SGLN, GRAI, GIAI, DoD and
ATA tag encodings
BBBpat denotes an alphanumeric Serial Number (including the hyphen) or *
TTTpat denotes a CAGE code (assigned by the US DoD or NATO) or *
FFFpat denotes a filter code as used by the SGTIN, SSCC, SGLN, GRAI, GIAI, DoD and
ATA tag encodings but allowing * and [lo-hi] pattern syntax in addition

 AEROID-CAM-009 ©2006 Copyright 21
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

Translation between EPC-URI and Other EPC Representations
This section defines the semantics of EPC-URI encodings, by defining how they are
translated into other EPC representations and vice versa.

Bit string into EPC-URI (pure identity)

Create an EPC-URI by concatenating the following: the string
urn:epc:id:ata2:, the CAGE code c1c2c3c4c5, a dot (.) character, the Original Part Number p, a
dot (.) character and the Sequential Part Serial Number s.
The Sequential Part Serial Number should have no leading zeros, except where the
Sequential Part Serial Number is itself zero, in which case the corresponding URI portion
must consist of a single zero character.

Bit string into EPC-URI (tag-encoding)

Create an EPC tag URI by concatenating the following: the string
urn:epc:tag:, the encoding scheme (ata2-222), the colon character (:), the Filter
Value F as a decimal integer, a dot (.) character, the CAGE code c1c2c3c4c5, a dot (.)
character, the Original Part Number p and the Sequential Part Serial Number s.
The Sequential Part Serial Number should have no leading zeros, except where the
Sequential Part Serial Number is itself zero, in which case the corresponding URI portion
must consist of a single zero character.

URI into Bit String
The following procedure translates a URI into a bit string:

1. If the URI is an ATA2-URI (urn:epc:id:ata2:), stop: the URI cannot be translated
into a bit string.

2. If the URI is an EPC Tag URI (urn:epc:tag:encName:), parse the URI using the
grammar for TagURI as given on p6.
If the URI cannot be parsed using these grammars, stop: the URI is illegal and cannot be
translated into a bit string.
3. If encName is ata2-222, let the URI be written as
urn:epc:tag:encName:f1f2…fF.c1c2…c5.s1s2…sK
4. Interpret f1f2…fF as a decimal integer filter value F
5. Interpret c1c2…c5 as the 5-character CAGE code C
6. Interpret s1s2…sK as a string serial number S
7. Carry out the encoding procedure defined on p14.

 AEROID-CAM-009 ©2006 Copyright 22
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

Appendix A1: Encoding Scheme Summary Table
(non-normative) for ATA UID Construct 1

ATA1 - ATA Spec 2000 identifier (UID Construct 1)
ATA1-132 Header Filter

Value
CAGE Code Serial Number

 8 4 30 90
 xxxx

xxxx
(Binary
value)

(Refer to
Table
below for
values)

5 upper-case
alphanumeric characters

Up to 15 upper-case
alphanumeric characters

Filter Values
(Non-normative)
Type Binary

Value
Pallet 0000
Case 0001
UID item 0010
Safety equipment 0011
Reserved for future
use

All other
values

 AEROID-CAM-009 ©2006 Copyright 23
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

Appendix A2: Encoding Scheme Summary Table
(non-normative) for ATA UID Construct 2

ATA2 - ATA identifier based on UID Construct 2
ATA2-
222

Header Filter
Value

CAGE Code
(CAG)

Original Part
Number
(PNO)

Sequential Item
Number
(SEQ)

 8 4 30 90 90
 yyyy

yyyy
(Binary
value)

(Refer to
Table
below for
values)

5 upper-case
alphanumeric
characters

Up to 15 upper-
case
alphanumeric
characters

Up to 15 upper-
case alphanumeric
characters

Filter Values
(Non-normative)
Type Binary

Value
Pallet 0000
Case 0001
UID item 0010
Safety equipment 0011
Reserved for future
use

All other
values

 AEROID-CAM-009 ©2006 Copyright 24
Published November 22, 2006. Distribution restricted to Sponsors until May 14, 2006

Appendix H: Conversion between 6-bit compacted values
and the subset of ASCII characters permitted for use in ATA
Spec 2000 identifiers

Graphic
Symbol

Name 6-bit code Graphic
Symbol

Name 6-bit code

– Hyphen/Dash 101101 A Capital letter A 000001
0 Digit zero 110000 B Capital letter B 000010
1 Digit one 110001 C Capital letter C 000011
2 Digit two 110010 D Capital letter D 000100
3 Digit three 110011 E Capital letter E 000101
4 Digit four 110100 F Capital letter F 000110
5 Digit five 110101 G Capital letter G 000111
6 Digit six 110110 H Capital letter H 001000
7 Digit seven 110111 I Capital letter I 001001
8 Digit eight 111000 J Capital letter J 001010
9 Digit nine 111001 K Capital letter K 001011
 L Capital letter L 001100
 M Capital letter M 001101
 N Capital letter N 001110
 O Capital letter O 001111
 P Capital letter P 010000
 Q Capital letter Q 010001
 R Capital letter R 010010
 S Capital letter S 010011
 T Capital letter T 010100
 U Capital letter U 010101
 V Capital letter V 010110
 W Capital letter W 010111
 X Capital letter X 011000
 Y Capital letter Y 011001
 Z Capital letter Z 011010

Note that the following characters shall not appear in the CAGE code:

Hyphen (–)
Capital letter I
Capital letter O

